Search results for "NITROGEN CYCLE"

showing 10 items of 68 documents

Partitioning of nitrogen during melting and recycling in subduction zones and the evolution of atmospheric nitrogen

2019

Abstract The subduction of sediment connects the surface nitrogen cycle to that of the deep Earth. To understand the evolution of nitrogen in the atmosphere, the behavior of nitrogen during the subduction and melting of subducted sediments has to be estimated. This study presents high-pressure experimental measurements of the partitioning of nitrogen during the melting of sediments at sub-arc depths. For quantitative analysis of nitrogen in minerals and glasses, we calibrated the electron probe micro-analyzer on synthetic ammonium feldspar to measure nitrogen concentrations as low as 500 μg g−1. Nitrogen abundances in melt and mica are used together with mass balance calculations to determi…

010504 meteorology & atmospheric sciencesAnalytical chemistrychemistry.chemical_element[SDU.STU]Sciences of the Universe [physics]/Earth Sciences010502 geochemistry & geophysicsFeldspar01 natural sciencesMantle (geology)Geochemistry and Petrology[SDU.STU.GC]Sciences of the Universe [physics]/Earth Sciences/GeochemistrySubduction zonesNitrogen cycle0105 earth and related environmental sciencesMantle metasomatismSubductionGeologyNitrogenPartition coefficientchemistry13. Climate action[SDU]Sciences of the Universe [physics]visual_art[SDE]Environmental Sciencesvisual_art.visual_art_mediumSlabAtmosphere evolutionMicaGeologyNitrogen cycling
researchProduct

Modelling the Effects of Climate Change on the Supply of Inorganic Nitrogen

2009

Human-induced changes in the nitrogen cycle due to the increased use of artificial fertilisers, the cultivation of nitrogen-fixing crops and atmospheric deposition have made nitrogen pollution to surface waters a long-standing cause for concern. In Europe, legislation has been introduced to minimise the risk of water quality degradation from excessive nitrogen inputs e.g., the European Union Nitrates Directive (EU, 1991), Drinking Water Directive (EU, 1998) and Water Framework Directive (EU, 2000). Coastal regions in particular have been an important focus, since coastal eutrophication has been attributed to increased fluxes of nitrogen from the landscape (Howarth et al., 1996; Boesch et al…

010504 meteorology & atmospheric sciencesEcology0207 environmental engineering02 engineering and technology15. Life on land01 natural sciences6. Clean waterMacrophyteWater Framework Directive13. Climate actionEnvironmental protectionNutrient pollutionDrinking water directiveEnvironmental sciencemedia_common.cataloged_instance14. Life underwaterWater qualityEuropean union020701 environmental engineeringEutrophicationNitrogen cycle0105 earth and related environmental sciencesmedia_common
researchProduct

Modelling nitrous oxide emissions from cropland at the regional scale

2006

Arable soils are a large source of nitrous oxide (N2O) emissions, making up half of the biogenic emissions worldwide. Estimating their source strength requires methods capable of capturing the spatial and temporal variability of N2O emissions, along with the effects of crop management. Here, we applied a process-based model, CERES, with geo-referenced input data on soils, weather, and land use to map N2O emissions from wheat-cropped soils in three agriculturally intensive regions in France. Emissions were mostly controlled by soil type and local climate conditions, and only to a minor extent by the doses of fertilizer nitrogen applied. As a result, the direct emission factors calculated at …

010504 meteorology & atmospheric sciencesNITROUS OXIDElcsh:TP670-699Atmospheric sciences01 natural sciencesBiochemistryREGIONAL SCALE[SDV.IDA]Life Sciences [q-bio]/Food engineeringAGRONOMIENitrogen cycleComputingMilieux_MISCELLANEOUS0105 earth and related environmental sciences2. Zero hungerLand useIntensive farmingARABLE CROPSMODELLING04 agricultural and veterinary sciences[SDV.IDA] Life Sciences [q-bio]/Food engineering15. Life on landSoil type13. Climate actionGreenhouse gasSoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesEnvironmental scienceSpatial variabilitylcsh:Oils fats and waxesArable landFood Science
researchProduct

Environmental drivers interactively affect individual tree growth across temperate European forests

2019

Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to local land-use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global-change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global-change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus exc…

0106 biological sciences010504 meteorology & atmospheric sciencesEnvironmental changeClimate ChangeForest managementClimate changeForests010603 evolutionary biology01 natural sciencesTreesQuercus roburCoppicingQuercusFagus sylvaticabasal area incrementTemperate climateFagusEnvironmental ChemistryBosecologie en Bosbeheer/dk/atira/pure/core/keywords/biologyInstitut für Biochemie und Biologie0105 earth and related environmental sciencesGeneral Environmental ScienceGlobal and Planetary Changehistorical ecologyEcologybiologyEcologyScots pineTemperature15. Life on landNitrogen Cyclebiology.organism_classificationPE&RCForest Ecology and Forest ManagementDroughtsEuropenitrogen depositionddc:580climate changeFraxinusEcosystems Research13. Climate actionEnvironmental sciencesense organstree-ring analysis
researchProduct

The Glycerate and Phosphorylated Pathways of Serine Synthesis in Plants : The Branches of Plant Glycolysis Linking Carbon and Nitrogen Metabolism

2018

Serine metabolism in plants has been studied mostly in relation to photorespiration where serine is formed from two molecules of glycine. However, two other pathways of serine formation operate in plants and represent the branches of glycolysis diverging at the level of 3-phosphoglyceric acid. One branch (the glycerate – serine pathway) is initiated in the cytosol and involves glycerate formation from 3-phosphoglycerate, while the other (the phosphorylated serine pathway) operates in plastids and forms phosphohydroxypyruvate as an intermediate. Serine formed in these pathways becomes a precursor of glycine, formate and glycolate accumulating in stress conditions. The pathways can be linked …

0106 biological sciences0301 basic medicineycolysisReviewPlant Sciencelcsh:Plant culture01 natural sciencesSerine03 medical and health scienceslcsh:SB1-1110GlycolysisPlastidplastidNitrogen cycleglycerate serine pathwayγ-aminobutyric acid (GABA)gamma-aminobutyric acid (GABA)ChemistryBotanyCorrectionMetabolismBotanikglycolysisphosphorylated serine pathway030104 developmental biologyBiochemistryGlycinePhotorespirationPhosphorylation010606 plant biology & botany
researchProduct

Net ammonification as influenced by plant diversity in experimental grasslands

2012

Abstract Previous plant diversity experiments have mainly reported positive correlations between diversity and N mineralization. We tested whether this relationship can be explained by plant diversity-induced changes i) in the quantity or quality of organic matter or ii) in microclimatic conditions of central European grassland mixtures. We measured ex-situ net ammonification in a laboratory incubation of aboveground plant material and soil sampled in differently diverse plant mixtures. Secondly, in-situ net ammonification was assessed in a field incubation with mineralization cores containing standardized material in four treatments: soil only (control), and soil mixed with field-fresh pla…

0106 biological sciences2. Zero hungerchemistry.chemical_classificationSoil Sciencefood and beverages04 agricultural and veterinary sciencesMineralization (soil science)15. Life on landBiology010603 evolutionary biology01 natural sciencesMicrobiologycomplex mixtureschemistryAgronomySoil water040103 agronomy & agriculture0401 agriculture forestry and fisheriesOrganic matterSpecies richnessLeaching (agriculture)IncubationNitrogen cycleLegumeSoil Biology & Biochemistry
researchProduct

Towards food, feed and energy crops mitigating climate change

2011

Agriculture is an important source of anthropogenic emissions of the greenhouse gases (GHG), methane (CH 4 ) and nitrous oxide (N 2 O), and crops can affect the microbial processes controlling these emissions in many ways. Here, we summarize the current knowledge of plant–microbe interactions in relation to the CH 4 and N 2 O budgets and show how this is promoting new generations of crop cultivars that have the potential to mitigate GHG emissions for future agricultural use. The possibility of breeding low GHG-emitting cultivars is a paradigm shift towards sustainable agriculture that balances climate change and food and bioenergy security.

0106 biological sciencesCrops AgriculturalConservation of Natural ResourcesClimate ChangePlant ExudatesNitrous OxideClimate changePlant ScienceBiology7. Clean energy01 natural scienceskyoto protocolnitrogenCarbon CycleSoilBioenergyemission in agricultureSustainable agriculture[SDV.BV]Life Sciences [q-bio]/Vegetal BiologySoil Microbiology2. Zero hungerFood securityBacteriabusiness.industryAgroforestrymicrobial processmethanen2o04 agricultural and veterinary sciences15. Life on landNitrogen Cycleghg emissionEnergy crop13. Climate actionAgriculturegreenhouse gasGreenhouse gasWetlandsSustainabilityRhizosphere040103 agronomy & agriculture0401 agriculture forestry and fisheriesbusiness010606 plant biology & botany
researchProduct

Biochemical Quality of Crop Residues and Carbon and Nitrogen Mineralization Kinetics under Nonlimiting Nitrogen Conditions

2000

International audience; Statistical relationships were established between the fate of C and N from 47 types of crop residues and their biochemical characteristics during a soil incubation at 15°C. The incubations were carried out under nonlimiting N in order to differentiate the effects of biochemical characteristics of residues from those of soil N availability. Depending on the residue, the apparent mineralization of residue C after 168 d varied from 330 to 670 g kg−1 of added C. Mineralization kinetics were described using a two-compartment decomposition model that decomposes according to first-order kinetics. Amounts of C mineralized after 7 d and the decomposition rate coefficient of …

0106 biological sciences[SDE] Environmental SciencesCrop residue[SDV]Life Sciences [q-bio][SDV.SA.AGRO]Life Sciences [q-bio]/Agricultural sciences/AgronomySoil Sciencechemistry.chemical_element[SDV.SA.SDS]Life Sciences [q-bio]/Agricultural sciences/Soil study01 natural sciencesBotanyOrganic matterAGRONOMIENitrogen cycleChemical compositionIncubationComputingMilieux_MISCELLANEOUS2. Zero hungerchemistry.chemical_classificationfood and beverages04 agricultural and veterinary sciencesMineralization (soil science)15. Life on landNitrogen[SDV] Life Sciences [q-bio]chemistryEnvironmental chemistry[SDE]Environmental Sciences040103 agronomy & agriculture0401 agriculture forestry and fisheriesHordeum vulgare010606 plant biology & botany
researchProduct

Peaks of in situ N2O emissions are influenced by N2O producing and reducing microbial communities across arable soils

2018

International audience; Introduction Agriculture is the main source of terrestrial N2O emissions, a potent greenhouse gas and the main cause of ozone depletion ((Hu et al., 2015). The reduction of N2O into N2 by microorganisms carrying the nitrous oxide reductase gene (nosZ) is the only known biological process eliminating this greenhouse gas. Recent studies showed that a previously unknown clade of N2O-reducers (nosZII) was related to the potential capacity of the soil to act as a N2O sink (see Hallin et al., 2017 and references therein). However little is known about how this group responds to different agricultural practices. Here, we investigated how N2O-producers and N2O-reducers were …

0301 basic medicine[SDE] Environmental SciencesDenitrification[SDV]Life Sciences [q-bio]Biologie du sol[SHS]Humanities and Social Sciencesnitrogen cyclingF01 - Culture des plantes[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyhttp://aims.fao.org/aos/agrovoc/c_34841General Environmental Science2. Zero hungerAbiotic componentGlobal and Planetary ChangeBiotic componentdenitrificationEcologyEcologyNitrification[SDV] Life Sciences [q-bio]greenhouse gasCycle de l'azote[SDE]Environmental Sciencestillage[SHS] Humanities and Social SciencesArable landGaz à effet de serreP33 - Chimie et physique du solagroecosystemsP40 - Météorologie et climatologie030106 microbiologyhttp://aims.fao.org/aos/agrovoc/c_2793803 medical and health sciencesland-useEnvironmental Chemistryhttp://aims.fao.org/aos/agrovoc/c_12834[SDV.BV]Life Sciences [q-bio]/Vegetal Biologyhttp://aims.fao.org/aos/agrovoc/c_1666Nitrogen cycleChangement climatique[ SDV ] Life Sciences [q-bio]http://aims.fao.org/aos/agrovoc/c_7160P34 - Biologie du sol15. Life on landequipment and suppliesagroecosystems;nitrogen cycling;land-use;tillage;denitrification;nitrification;microbial diversity;greenhouse gasAgronomy13. Climate actionGreenhouse gasmicrobial diversitySoil waterEnvironmental scienceNitrification
researchProduct

Prokaryotic assemblages within permafrost active layer at Edmonson Point (Northern Victoria Land, Antarctica)

2018

This study was aimed at gaining insights on the prokaryotic community (in terms of both taxonomic composition and activities) inhabiting the active layer at Edmonson Point, an ice-free area on the eastern slope at the foot of Mount Melbourne (Northern Victoria Land, Antarctica). Samples were collected during the thawing period, when microbial physiological activities are restored to utilize previously frozen organic substrates. Despite the very small cell sizes (600 daltons) substrates, as indicated also by the obtained rates of enzymatic hydrolytic activities over proteolytic, glycolitic and phosphoric compounds. Taxonomical composition showed that Proteobacteria, Actinobacteria and Firmic…

0301 basic medicinemetabolic activitiesFirmicutesta1172seasonally thawed active layerSoil ScienceikiroutaAntarctica; Metabolic activities; Prokaryotic community; Seasonally thawed active layer; Microbiology; Soil SciencePermafrostMicrobiologyActinobacteria03 medical and health sciencesAbundance (ecology)Organic mattermikrobitaineenvaihduntaNitrogen cycleAntarctica Metabolic activities Prokaryotic community Seasonally thawed active layer Microbiology Soil Sciencechemistry.chemical_classificationbiologyEcologyta1183prokaryotic communitybiology.organism_classificationmikrobisto030104 developmental biologychemistryHabitatEnvironmental scienceAntarcticaantarktinen alueProteobacteria
researchProduct